

Intruder Alarm
System

BBEEnngg ((HHoonnss)) CCoommppuutteerr aanndd

CCoommmmuunniiccaattiioonn EEnnggiinneeeerriinngg
CCoouurrssee

6644EETT33551166 UUnniitt ccooddee

EElleeccttrroonniicc EEnnggiinneeeerriinngg SSuubbjjeecctt

PPrr.. NNiicchhoollaass BBoowwrriinngg SSuuppeerrvviissoorr

0099556622221111 MMMMUU IIDD

MMoohhaammeedd AAllssuubbaaiiee NNaammee

 1

Acknowledgment

I would like to firstly thank my supervisor Pr. Nicholas Bowring for his

support throughout this unit. Special thanks for Mr. Dean O’Reilly and

other Academic staffs for their assistance and guidance in the laboratory

works. Thanks to all technicians staffs for providing the require

component and making the PCBs. Finally Thanks to my parents, family

and friends for their help, encouragement and guidance, who without I

would not be where I am today.

Report Outline

The report will start with a small introduction about the intruder alarm

system as well as explaining the aim and objectives for the project. Then,

the architecture of the complete design is going to be discussed in a block

diagram. All the important hardware used in this project will be described

in the Hardware Discretion section. This section will also cover important

details about both PIR and Microphone Circuits, such as amplification

stage, filter stage, and signal conditioning stage. There will also be a

small section that will cover the PCBs design for this project. The next

section will cover the software description of the system as well as

including some flow chart for the programme. The report will end up

with a conclusion and a further work sections, which are going to

summarise the main findings and provide some suggestion to improve the

project.

 2

Table of Content

 ACKNOWLEDGMENT 1

 REPORT OUTLINE 1

 TABLE OF CONTENT 2

1. INTRODUCTION 4

2. AIM 4

3. OBJECTIVES 4

4. SPECIFICATION 4

5. SYSTEM ARCHITECTURE 5

6. HARDWARE DESCRIPTION 5

6.1 MICROCONTROLLERS 5

 PIC18F2420 5

 ARDUINO UNO 6

6.2 PIR CIRCUIT 7

 PIR SENSOR 7

 AMPLIFIER AND FILTER 7

 SIGNAL CONDITIONING 7

6.3 MICROPHONE CIRCUIT 8

 CONDENCER MICROPHONE 8

 AMPLIFIER AND FILTER 8

 SIGNAL CONDITIONING 9

6.4 ETHERNET SHIELD 9

6.5 KEYPAD 10

6.6 LIQUID CRYSTAL DISPLAY 10

6.7 BUZZER AND LEDS 10

6.8 POWER SUPPLY 10

7. PCB DESIGN 11

8. SOFTWARE DESCRIPTION 12

8.1 PIC MICROCONTROLLER 13

 TIME INTERRUPT 13

 PASSWORD IDENTIFIER 13

 RESET PASSWORD 13

 SCANING KEYPAD 14

 LAST WARNING TIME 14

 READ PIR & MICROPHONE OUTPUT 14

 PWM 14

 3

8.2 ARDUINO & ETHERNET SHIELD 14

9. CONCLUSION 15

10. FURTHER WORK 15

10. FURTHER WORK 15

10.1 DIGITAL AUDIO PROSSESSING 15

10.2 RESET BUTTON 15

10.3 CAMERA 16

10.4 SOFTWARE IMPROVEMENT 16

11. REFERENCES 17

12. APPERNDIXES 18

 APPENDIX-1: FULL CIRCUIT CONNECTION. 18

 APPENDEX-2: SCHEMATICS DIAGRAMS. 19

 APPENDIX-3: PCB BOTTOM LAYER DESIGN. 20

 APPENDIX-4: PIC18F2420 PINS DIAGRAM. 21

 APPENDIX-5: PICKIT3 PINS-OUT. 21

 APPENDIX-6: HUMAN AND ANIMAL SOUNDS RESULTS. 21

 APPENDIX-7: TESTING THE SYSTEM.. 22

 APPENDIX-8: POWER SUPPLY CONNECTION. 23

 APPENDIX-9: PIC18F2420 CODE. 24

 APPENDIX-10: ARDUINO CODE. 35

 4

1. Introduction

In the past few decades, security peoples were hired to guard the areas. House owners

were invested descent amount for in order to provide security. There is nothing equal

to human beings. However, as the technology develops electronics security systems

gained popularity among the people because of various factors like fastest and easiest

method of security, better security and large coverage area (Home Security Guru,

2012). This project is an attempt to create a simple intruder alarm system, which

detects movement and sound levels being activated by either human voice or motion.

It will start with designing the PIR and Microphone circuits, followed by choosing an

appropriate amplification and filtering stages. Then, it is going to cover some methods

of signal conditioning stages in order to provide an output of 5V, which is compatible

with microcontroller. After that, there will be some challenges to design good

software for the overall system, as well as connecting it to the internet.

2. Aim

 The aim of this project is to design, build and develop an intruder alarm system.

3. Objectives

 Understand the characteristics of amplifiers and filters.

 Design and build a PIR circuit.

 Design and build a Microphone circuit.

 Signal conditioning stage to be compatible with microcontroller 5V.

 Write good programmes for both PIC and Arduino microcontrollers.

 Control the system over internet use Ethernet Shield.

 Make a good user friendly interface.

 Develop PCB design and soldering skills.

4. Specification

The system requirements are given below:

 ±15V power supply voltage for op-amps.

 5V supply is required for microcontrollers and other components.

 Internet connection RJ45 cable for the Ethernet Shield.

 5

5. System Architecture

The block diagram of the complete design is shown in figure-1. The system can be

divided into two parts. The first part is all about controlling the inputs and outputs of

the system. As it illustrated, the PIC microcontroller “PIC18F2420” is going to read

the outputs of PIR circuit, microphone circuit and keypad, and controls the outputs of

LCD, buzzer and LEDs. Moreover, the second part is about checking and controlling

the system through the internet. A web page has been created by programming

Arduino Uno Board and Ethernet Shield. In order to allows the web page to control

the system, both microcontrollers have been connected together and programmed to

the understand each other. The full circuit is included on appendix-1.

Figure-1: Block diagram of the security alarm system.

6. Hardware Description

6.1 Microcontrollers

 PIC18F2420

This family offers the advantages of all PIC18 microcontrollers. It has high

computational performance at an economical price, with the addition of high-

endurance, Enhanced Flash program memory. Moreover, PIC18F2420 uses nano

watt technology, which can significantly reduce power consumption during operation.

The microcontroller have multiple of internal oscillator, 8 use-selectable frequencies

 6

from 31 kHz to 8 MHz. Some of the important features are summarized in table-1.

Programming a PIC microcontroller in C language requires using MPLAB IDE with

C18 library. After compiling the programme, the C code will converted into machine

language (hex file). In order to upload this file to the microcontroller, a PIC

programmer is required. In this project the programmer is PICkit3, see appendex-4 for

PIC18f2420 pins diagram and appendex-5 for PICkit3 pins out.

Table-1: Summary of important PIC18F2420 features (Arduino, 2012).

 Arduino Uno

The Arduino Uno is a microcontroller board that contains everything needed to

support the microcontroller. It is made up of an Atmel AVR Microprocessor (which is

ATmega328), a 5 volt linear regulator, a power jack, a USB connection, an ICSP

header, a reset button, a 16 MHz crystal oscillator which is enable the Arduino to

operate at the correct speed by sending the right time pulses with specified frequency,

and an Atmega8U2 that programmed as a USB-to serial converter (McRoberts, 2010).

Some of the important features are summarized in table-2 below. Arduino boards can

be easily programmed using Arduino Integrated Development Environment. It has

many libraries and functions that will help users to do incredible stuffs (Arduino,

2013). After compiling the programme, a hex file will be generated and it can be

uploaded by connecting the Arduino board and click Build icon.

Table-2: Summary of important Arduino Uno features (Arduino, 2013).

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage(recommended) 7-12V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analogue Input Pins 6

DC Current per I/O Pin 40 mA

Flash Memory 32 KB (ATmega328) of which 0.5 KB used by boot loader

SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega328)

Clock Speed 16 MHz

 7

6.2 PIR Circuit

Figure-2: Block diagram of the PIR circuit.

 PIR Sensor

The block diagram in figure-2 describes the process of detecting movement being

activated by human. It starts with Passive Infrared Sensor, which is an electronic sensor

that measures the change in temperature radiation omitted form human body in its field of

view. This PIR sensor uses a pyroelectric sensing element that has a very low level

analogue signal output. It has an unstable AC signal from 1mVp-p to 2mVp-p with

high frequency noise component around 10mVp-p. This signal rides on a DC

component of 1V that will vary with temperature. In order to increase the detection

area, a Fresnel lens has been placed on the top of the PIR. It helps to focus the

infrared radiation by divides the whole area into different zone, any movement

between zones will causes a change in the IR (Zilog, 2010).

 Amplifier and Filter

Since the output signal of the PIR sensor is very small, it needs to be well amplified to

be use by other components to make decisions and act upon them. Therefore, a two

stage amplifier with a total gain of 6000 has been used. Moreover, the PIR signal is

required to have a tight band pass filter stage around 0.1Hz to 10Hz to reduce high

frequency noise and strip the DC element that the signal rides on (Zilog, 2010). In this

project the circuit that been used has a band pass filter of 0.8Hz to 6Hz.

 Signal Conditioning

The last stage is the comparator stage that gives the output voltage of either 5V for

logic one or 0V for logic zero depending on the threshold voltage across it input, see

figure-3. In this project, the comparator has been provided with a 10kΩ

potentiometer, so the threshold voltage can be change and adjusted any time. The

comparator output can be used together with a pull-up resistor by a microcontroller to

make decisions and act upon it.

 8

Figure-3: The output of the PIR circuit.

6.3 Microphone Circuit

Figure-4: Block diagram of the microphone circuit.

 Condenser Microphone

The block diagram in figure-4 describes the process of monitoring the sound levels

being activated by human voice. All microphones are transducers that convert sound

pressure waves into an electrical signal. Microphone is similar to capacitor. It made of

a dielectric material that holds a permanent charge. Vibrates effects will causes a

change in the internal capacitance and an electrical signal will produced. In order to

pick up a voice signal a pull up resistor of 4.7kΩ is used to determine the output

impedance on the microphone. Moreover, the output signal has filtering capacitor of

0.1uF which is responsible to block any DC voltage bias from the output.

 Amplifier and Filter

Since the output signal of the microphone is very small, a one stage amplifier with a

gain of 1500 has been used to amplify this signal. As the amplifier gain increase, the

detection area will also increase. Moreover, the microphone has been tested with

different animal and human sounds. For each voice, four readings have been recorded

 9

using oscilloscope. The bar chart in appendix-6 shows all the recorded results for the

tested sounds. From these results, the suitable values for the band pass filter to remove

non human voice have been selected to be from 500Hz to 1.5kHz.

 Signal Conditioning

The microphone circuit provide an output signal of ±15V. In order to make it

suitable for microcontrollers, this signal needs to go through the following stages:

Figure-5: Signal conditioning stages for the microphone circuit

Rectifier: Removing the negative signal using a diode.

Regulator: regulate the voltage to maximum of 5V using zener diode.

Integrator: by using an RC network, the output signal is going to be smooth nearly

DC output and it will be suitable to use with microcontrollers.

In this case, this method is better than using a comparator, because having an

analogue output for the microphone circuit will provides the opportunity to improve

ignoring the non-human voice through programming.

6.4 Ethernet Shield

The Arduino Ethernet shield enables your Arduino to send and receive data from

anywhere in the world with an internet connection just by plugging it onto the Arduino

board, connecting it to the network (RJ45 cable) and following few simple instructions.

All hardware, software and documents are freely available and open source (Arduino,

2013). This shield is based on the Wiznet W5100ethernet chip, which will provide an IP

address stack capable of both TCP and UDP. It is very easy to programme this shield

using the Ethernet library , which is available on Arduino IDE. This shield has been used

in this project to allow the user to check the system state and to have the ability to turn on

or off the system through the internet, using mobile phones, tablet, laptop, PC or any

other devices that has internet connection (McRoberts, 2010).

http://www.wiznet.co.kr/Sub_Modules/en/product/Product_Detail.asp?cate1=5&cate2=7&cate3=26&pid=1011
http://arduino.cc/en/Reference/Ethernet

 10

6.5 Keypad

Matrix keypads are well known for their simple architecture and ease of interfacing

with any microcontroller. In this project, a 12 buttons 3x4 matrix keypad has been

used to give the opportunity for the user to select the wanted mode and to enter the

time or the password.

6.6 Liquid Crystal Display

In this project, a Liquid Crystal Display have been used to provide a better user

interface by showing massages on the display, which is an easer way to make the

users follow the right instructions, see figure-6 below. This LCD consisting of to 2

lines, each line can handle 16 characters. The connection could be quite large and

required more pins. However, it could be minimised in two steps. The first step is to

connect the Read/ Write pin to the ground because it will not required. The second

step is to use 4 data lines instead of 8 lines, and send the data twice.

Figure-6: Some important message that will display on the screen.

6.7 Buzzer and LEDs

A buzzer, which is an audio signalling device, has been used in this project to give an

alarm sound when the PIR or microphone detects human movement or sound. Since

buzzer requires square wave to make sounds, a PWM signal from the microcontroller

will be used.

A light-emitting diode “LED” is a semiconductor light source. There are many

different colours for LEDs. They are used in this project to provide a good user

interface. Three colours has been selected Red, Yellow and Green, each led has it own

current limited resistor, see figure-9.

6.8 Power Supply

Powering on the system requires +15V -15V and 5V. A variable power supply from

the lab can be use. However, reducing the gain so it becomes suitable with working at

9V will give the opportunity to use two 9V batteries and one voltage regulator “5V”

to power on the circuit. The power supply connection is available on appendix-8.

http://en.wikipedia.org/wiki/Sound

 11

7. PCB Design

The PCB design for PIR and microphone circuit has been done using Multisim and Ultiboard soft-

wares, while the PIC circuit has been done through Eagle PCB and POV for 3D image. The bottom

layers of the PCBs can be found in appendix-3. In all PCBs solid ground panel has been used, which

will provides continuous low impedance path for return current. In addition, the power supplies are

having thicker tracks and connected in a star configuration. The figure below shows the top layer of

final PCBs and there outputs. There was a small problem in the PIR PCB, the comparator was giving

a square wave by it-self and it response get better by connecting an oscilloscope to it input. This

means that the comparator cannot capture the input signal, and it is necessarily to slow down the

signal with a capacitor. Therefore an extra 10nF has been soldered in the top layer of the PIR PCB.

Figure-7: Final PCBs.

 12

8. Software Description

This software will provide many features for the user. It has a 24 hour clock, password identifier and

very simple instructions that can be easily followed. Moreover, this system is capable of store and

show the last warning time. It also provided with a reset password option, so the password can be

change any time. In addition, the software will allow the user to control and check the system

through the internet. The figure below is showing the flow char of the complete system. The top one

is the main programmed, while the rest are a functions that will called in the main flowchart.

Figure-8: Flow chart of the programme.

 13

8.1 PIC Microcontroller

The programme on the PIC microcontroller will start with showing a welcome

message and then ask the user to enter the time. In this process the system will wait

the user to enter 4 numbers, see “Enter The Time” flow char. From these numbers, the

value of the hours and minutes will be calculated. If the entered time is not available

(such as 27:80) LCD will display a not valid time massage and ask for correcting the

time.

After that, the programme will display the system state, which is also the main menu,

and it will also wait for the user option:

Table-3: Main menu option for the system.

Option Key Option Name Option Description

1 System State
Show the system state: ON, OFF or

Warning!

2 Show the Time Display the current time.

3 Reset Password
Enable user to change the password (old

password is required).

4 Show Last Warning Time Display the last warning time.

ON ON State
Turn on the system and enable human

detection (the password is required).

OFF OFF State
Turn off the system and disable human

detection (the password is required).

 Time Interrupt

Interrupt by TMR0 overflowing with a clock speed of 31kHz, set TMR0H to 0xF8

and TMR0L to 0x7F. The 16 bit TMR0 overflows at 0xFFFF setting it initially to

0xF87F means it will run for 0x0780 before overflowing and interrupting

approximately 1 minute. Each 60 second the programme will be interrupted to update

the time values inside the programme. It will only update the time on the LCD when

the user is on the “show the time” option.

 Password Identifier

Entering the password is done by calling enterPassword() function, which is takes

four integers numbers and compare them in the right sequence of the numbers inside

thePassword[] array and for each match number increase integer password by 1. So,

for the correct password integer password should have a total value of 4 otherwise

the password is wrong. This system has a default password which is “1234”. This

password can be change any time.

 Reset Password

In order to reset or change the password, the user will be asked for the old password.

When the right password entered the system will allow the user to store the new

password on thePassword[] array. In case of entering the wrong old password, the

system will display a wrong pass word message to inform the user and will go back to

the main menu.

 14

 Scanning Keypad

The keypad is connected to PORTB because it contains internal pull-up resistors. Therefore, it is

necessarily to turn on the internal pull up resistors in PORTB “INTCON2bits.RBPU=0”. The

internal pull-up resistors are only applies on PORTB inputs and they are not having any effects on

pins configured as outputs (MikroElektronika, 2012).

The scan function is scanning the key pad in the following order:

RB4 low and scan RB0 to RB3 for a low to check which key had pressed 1, 4, 7 or ON.

RB5 low and scan RB0 to RB3 for a low to check which key had pressed 2, 5, 8 or 0.

RB6 low and scan RB0 to RB3 for a low to check which key had pressed 3, 6, 9 or OFF.

 Last Warning Time

When alarm turn on because of movement or voice detection, the system will store the warning time

in an array called LW_time[0]. Then the user will be able to see this time by pressing number 4 on

the main menu using the keypad.

 Read PIR & Microphone Output

In order to turn on the alarm, the PIC microcontroller is required to read both PIR and microphone

output. Since the PIR circuit provide a digital output, reading this signal will be straightforward.

Simply, by set C3 pin to be an input and connect the PIR output to it. However, reading an analogue

signal from the microphone output will require an analogue to digital converter. The PIC18F2420

has an ADC of 10 bit resolution. Therefore, the converter can divide the analogue input voltage

between 0v and 5v to 2^ 10 levels, which are 1024 levels from 0 to 1023.

ADCON0bits.CHS2 = 1; //select the right channel for ADC
ADCON0bits.ADON = 1; //turn on A/D
ADCON2 = 0b10000000; //right justified

ADCON0bits.GO_DONE = 1; //do A/D measurement
while (ADCON0bits.GO_DONE == 1); //wait until bit = 0 measurement completed
voice = ADRESL + (ADRESH * 256); //store the value in integer voice

 PWM

As discussed before PWM signal is needed for the buzzer to generate sound. The following code

explains the steps followed to configure the Capture Compare PWM (CCP) module for this PIC.

T2CON = 0b00000100; //prescaler + turn on TMR2;
PR2 = 0b00001111; //set the right value for PR2
CCPR1L = 0b00000111; //set duty MSB
CCP1CON = 0b00111100; //duty lowest bits + PWM mode

8.2 Arduino & Ethernet Shield

The Arduino programme will start with providing the IP address and creating the web page shown in

appendex-1. The web page will show the state of the system, movement detection and voice

detection. It also contains two radio buttons and one submit button, which is needed to turn on or off

the system. This web will automatically refresh each 5 second to update the information.

 15

As shown in figure-9, the Arduino is has three input

coming from the PIC and two outputs going to the

PIC. When the ON button is submitted in the web

page, the status values will be 2. This is going to

turn on the ON Pin, as well as the system state. As

long as the status value is equal to 2, the user will

not be able to close the system using the keypad.

Therefore, the Arduino programmed to give a

trigger or pulse to the PIC to avoid this problem.

So, after submitting ON or OFF button the status

value will be 2 or 1 for short period of time and

then returned automatically to 0.

9. Conclusion

In conclusion, the project requirement has been successfully achieved. Both PIR and Microphone circuit

has been design and build on PCB. Since the output of these circuit was very small, the required to

amplification and filtering stages. In order to provide these signals to a microcontroller, some signal

conditioning methods have been applied. In the PIR circuit, a comparator has been use to provide a

digital output 0V or 5V. While in the microphone circuit a method has been followed to provide an

analogue output from 0V to 5V.

PIR and Microphone PCBs have been used together with PIC microcontroller, Arduino Uno board,

Ethernet shield, keypad, LCD, Buzzer and LEDs to create an intruder alarm system. The over all system

was able to detect human movement and voice and provide the user with many futures such as, good user

interface, easy instruction to follow and an internet access to the system.

The outcome of this project has developed circuit design and analysis skills. This project offers an

excellent knowledge about filter, amplification, and signal conditioning stage. As well as, gaining some

experience with using engineering software tools for simulating circuits and making PCBs. It also

provides the opportunity to apply and develop the programming skills for both PIC and Arduino

microcontrollers.

10. Further work

10.1 Digital Audio Possessing

Given the slow speed of the PIC and Arduino microcontroller, it is difficult to process audio in real-time.

However, with a very fast computer it will be possible to improve the project with adding Digital Signal

Processing. This process starts with a high resolution ADC with specified sampling rate, in order to

converts an analogue signal from the microphone to a digital signal. Most audio hardware for computers

includes 16-bit converters and supports sampling rates of up to 44100Hz. A band pass filter is also

needed to avoid the distortion of the frequencies higher than Nyquist frequency, which is half of the

system’s sample rate. This will help to have much better human voice detection for our project.

10.2 Reset Button

Since this security alarm system has an on and off switch, it not very necessarily to have a reset button.

However, a reset button can be added to the PIC circuit by placing a button from GND to the MCLR pin

of the microcontroller including the same pull up resistor 4.7kΩ to VDD. This will help to reset all the

registers and placing them to the start position, if the microcontroller does not behave in the right way.

Figure- 9: Arduino and Ethernet connection.

 16

10.3 Camera

As an extra feature, a camera can be added in this project, which will take a photo if

the system detects human voice or movement. This photo can be uploaded into the

web page or sent to the user email using the Ethernet shield.

10.4 Software Improvement

The software can be improve by adding a function that can measure the background

noise, which can be activated when the microphone will located in noisy pace.

Moreover, the software can also improved by adding a feature that will allow the user

to select the wanted time to turn on or off the system, such as making the system

operate every day between 11:00 pm to 5:00 am.

 17

11. References

Arduino, 2013. Arduino Uno. [online] Available at: <http://arduino.cc/en/Main/

ArduinoBoardUno> [Accessed on 19 March 2013].

Bates, M. P., 2011. PIC microcontrollers: an introduction to microelectronics.

Oxford: Elsevier Ltd. p17.

Home Security Guru. 2012. Introduction to Home Security Systems: Alarms and

Sensors. Available: http://www.homesecurityguru.com/introduction-to-home-

security-systems-alarms-and-sensors. [Accessed on 19 March 2013].

McRoberts, M., 2010. Beginning arduino. New York : Apress.

MikroElektronika. 2012. Inputs and outputs ports. Available:

http://www.mikroe.com/eng/chapters/view/4/chapter-3-i-o-ports/. Last accessed 21st

March 2012.

Zilog, 2010. ZMOTIONth a new PIR motion detector architecture. [pdf] WW Field

Applications Manager. Available at: <http://www.zilog.com/docs/appnotes/WP0

017.pdf> [Accesseced on 19 March 2013].

http://arduino.cc/en/Main/ArduinoBoardUno
http://arduino.cc/en/Main/ArduinoBoardUno

 18

12. Appendixes

Appendix-1: Full Circuit Connection.

 19

Appendex-2: Schematics Diagrams.

 20

Appendix-3: PCB Bottom Layer Design.

 21

Appendix-4: PIC18F2420 Pins Diagram.

Appendix-5: PICkit3 Pins-out.

Appendix-6: Human and animal sounds results.

 22

Appendix-7: Testing the System.

 23

Appendix-8: Power Supply Connection.

 24

Appendix-9: PIC18F2420 Code.

//===
//Project Title : Security Alarm System
//Student Names : Mohamed Alsubaie, Ahmed Alkhwher and Naif Alharbi
//Student ID NO.: 09562211, 10981738 and 09564323
//Supervisor : Professor Nicholas Bowring
//===

//Include Headers Files
#include <p18f2420.h>
#include <delays.h>

//Microcontroller Setup
#pragma config WDT=OFF , OSC=INTIO7 , PWRT = ON, LVP=OFF, MCLRE = OFF

//LCD Commands
#define CLEAR_SCREEN 0b00000001
#define FOUR_BIT 0b00101100
#define LINES_5X7 0b00111000
#define CURSOR_OFF 0b00001101
#define CURSOR_BLINK 0b00001111
#define CURSOR_RIGHT 0b00000110

#define DATA_PORT PORTA //Connect the LCD data to PORTA
#define RS_PIN PORTCbits.RC0 //RA6 is connected to RS pin on LCD
#define E_PIN PORTCbits.RC1 //RA7 is connected to E pin on LCD

#define sensor PORTCbits.RC3 //RA5 is connected to the sensor
#define LED PORTBbits.RB7 //RB7 is connected to the buzzer

//Inputs From Arduino & Ethernet
#define serverPinON PORTCbits.RC4 //ON button from the web page (Pin C4)
#define serverPinOFF PORTAbits.RA4 //OFF button from the web page (Pin A4)

//Outputs To Arduino & Ethernet
#define statePin PORTCbits.RC5 //(Pin C5) is used to provide the system state (ON/OFF) to Arduino
#define motionPin PORTCbits.RC6 //(Pin C6) is used to provide the motion detection to Arduino (also
to LED)
#define voicePin PORTCbits.RC7 //(Pin C7) is used to provide the voice detection to Arduino (also to
LED)

int voice; //integer to save the Microphone value from the ADC
int voiceThreshold = 400; //voice threshold used for detection condition
int voice_condition = 0; //voice condition
int motion_condition = 0; //motion condition

int thePassword[] = {1, 2, 3, 4}; //the default password is 1234, the password is stored in this array
(xxxx)
int time[]; //the time values is stored in this array (00:00)
int numberPressed = 12; //because no numberPresswd is equal to 12
int key = 12; //because no key is equal to 12
int password = 0; //used to check the right password
int resetPassword = 0; //reset password condition
int x = 0; //x is used as a counter and for condition
int hour = 0; //hour integers values
int min = 0; //min integers values
int show = 0; //show condition
int state = 0; //state condition
int warning = 0; //warning condition

int LW = 0; //Last Warning condition
int LW_time[] = {0, 0, 0, 0}; //array to store the Last Warning time

//===
//Liquid Crystal Display Functions
//===
void SetAddr(unsigned char DDaddr)
{
 DATA_PORT &= 0xf0; // Write upper nibble
 DATA_PORT |= (((DDaddr | 0b10000000)>>4) & 0x0f);

 RS_PIN = 0; //Set control bit
 Delay10TCYx(5); //20 clock cycles, 2.5mS

 25

 E_PIN = 1; //Clock the cmd and address in
 Delay10TCYx(5); //20 clock cycles, 2.5mS
 E_PIN = 0;

 DATA_PORT &= 0xf0; //Write lower nibble
 DATA_PORT |= (DDaddr&0x0f);

 Delay10TCYx(5); //20 clock cycles, 2.5mS
 E_PIN = 1; //Clock the cmd and address in
 Delay10TCYx(5); //20 clock cycles, 2.5mS
 E_PIN = 0;
}

void WriteCmd(unsigned char cmd)
{
 DATA_PORT &= 0xf0;
 DATA_PORT |= (cmd>>4)&0x0f;
 RS_PIN = 0; //Set control signals for command
 Delay10TCYx(5); //20 clock cycles, 2.5mS
 E_PIN = 1; //Clock command in
 Delay10TCYx(5); //20 clock cycles, 2.5mS
 E_PIN = 0;

 // Lower nibble interface
 DATA_PORT &= 0xf0;
 DATA_PORT |= cmd&0x0f;
 Delay10TCYx(5); //20 clock cycles, 2.5mS
 E_PIN = 1; //Clock command in
 Delay10TCYx(5); //20 clock cycles, 2.5mS
 E_PIN = 0;
}

void WriteChar(char data)
{
 DATA_PORT &= 0xf0;
 DATA_PORT |= ((data>>4)&0x0f);

 RS_PIN = 1; //Set control bits
 Delay10TCYx(5); //20 clock cycles, 2.5mS
 E_PIN = 1; //Clock nibble into LCD
 Delay10TCYx(5); //20 clock cycles, 2.5mS
 E_PIN = 0;

 DATA_PORT &= 0xf0; //Lower nibble interface
 DATA_PORT |= (data&0x0f);

 Delay10TCYx(5); //20 clock cycles, 2.5mS
 E_PIN = 1; //Clock nibble into LCD
 Delay10TCYx(5); //20 clock cycles, 2.5mS
 E_PIN = 0;
}

void WriteString(const rom char *buffer)
{
 while(*buffer) //Write data to LCD up to null
 {
 Delay10TCYx(5); //20 clock cycles, 2.5mS
 WriteChar(*buffer); //Write character to LCD
 buffer++; //Increment buffer
 }
 return;
}

//===
//Keypad Function
//===
void scan()
{
 //B4 is 0 scanning 1,4,7,*
 PORTBbits.RB4 = 0;
 PORTBbits.RB5 = 1;
 PORTBbits.RB6 = 1;

 if (PORTBbits.RB0==0)

 26

 {
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 while (PORTBbits.RB0==0); //wait until switch has been released
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 numberPressed = 1;
 return;
 }

 if (PORTBbits.RB1==0)
 {
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 while (PORTBbits.RB1==0); //wait until switch has been released
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 numberPressed = 4;
 return;
 }

 if (PORTBbits.RB2==0)
 {
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 while (PORTBbits.RB2==0); //wait until switch has been released
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 numberPressed = 7;
 return;
 }

 if (PORTBbits.RB3==0)
 {
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 while (PORTBbits.RB3==0); //wait until switch has been released
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 numberPressed = 10; //10 is for "ON" pressed
 return;
 }

 //B5 is 0 scanning 2,5,8,0
 PORTBbits.RB4 = 1;
 PORTBbits.RB5 = 0;
 PORTBbits.RB6 = 1;

 if (PORTBbits.RB0==0)
 {
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 while (PORTBbits.RB0==0); //wait until switch has been released
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 numberPressed = 2;
 return;
 }

 if (PORTBbits.RB1==0)
 {
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 while (PORTBbits.RB1==0); //wait until switch has been released
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 numberPressed = 5;
 return;
 }

 if (PORTBbits.RB2==0)
 {
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 while (PORTBbits.RB2==0); //wait until switch has been released
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 numberPressed = 8;
 return;
 }

 if (PORTBbits.RB3==0)
 {
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 while (PORTBbits.RB3==0); //wait until switch has been released
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 numberPressed = 0;
 return;

 27

 }

 //B6 is 0 scanning 3,6,9,#
 PORTBbits.RB4 = 1;
 PORTBbits.RB5 = 1;
 PORTBbits.RB6 = 0;

 if (PORTBbits.RB0==0)
 {
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 while (PORTBbits.RB0==0); //wait until switch has been released
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 numberPressed = 3;
 return;
 }

 if (PORTBbits.RB1==0)
 {
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 while (PORTBbits.RB1==0); //wait until switch has been released
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 numberPressed = 6;
 return;
 }

 if (PORTBbits.RB2==0)
 {
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 while (PORTBbits.RB2==0); //wait until switch has been released
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 numberPressed = 9;
 return;
 }

 if (PORTBbits.RB3==0)
 {
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 while (PORTBbits.RB3==0); //wait until switch has been released
 Delay100TCYx(8); //wait 0.1s for switch bounce to stop
 numberPressed = 11; //11 is for "OFF" pressed
 return;
 }
}

//===
//Secyrity System Functions
//===
void TimeValues() //this function is storing the time values in time[]
{
 time[0] = hour/10; //store the hour tens number in time[0] dividing by 10
 time[1] = hour%10; //store the hour units number in time[1] dividing by 10 but taking
the reminder
 time[2] = min/10; //store the min tens number in time[2] dividing by 10
 time[3] = min%10; //store the min units number in time[3] dividing by 10 but taking
the reminder
}

void ShowTime() //this function is displaying the time from time[]
{
 //write the time in this form(hh:mm), hour and min are having 2 numbers,
 //they display by splitting them into tens and units number and add each of them to 0x30
 //as it shown in the LCD Character Set, for example 0x30 + 5 will display character 5
 SetAddr(0xC5); //move cursor to the middle
 WriteChar(0x30 + time[0]); //display the tens number of hour that stored in time[0] as
character
 WriteChar(0x30 + time[1]); //display the units number of hour that stored in time[1] as
charactar
 WriteChar(':'); //display character :
 WriteChar(0x30 + time[2]); //display the tens number of min that stored in time[2] as
charactar
 WriteChar(0x30 + time[3]); //display the units number of min that stored in time[3] as
charactar
 WriteString(" "); //display a string of spaces, just for better visualization
}

 28

void ShowLWTime() //this function is displaying the Last Warning time from LW_time[]
{
 if(LW == 1) //if their Last warning display it
 {
 SetAddr(0xC5); //move cursor to the middle
 WriteChar(0x30 + LW_time[0]); //display the tens number of hour that stored in LW_time[0]
as charactar
 WriteChar(0x30 + LW_time[1]); //display the units number of hour that stored in LW_time[1]
as charactar
 WriteChar(':'); //display character :
 WriteChar(0x30 + LW_time[2]); //display the tens number of min that stored in LW_time[2] as
charactar
 WriteChar(0x30 + LW_time[3]); //display the units number of min that stored in LW_time[3]
as charactar
 WriteString(" "); //display a string of spaces, just for better visualization

 }

 else //else display nothing
 {
 SetAddr (0xC0);
 WriteString(" ");
 }
}

void systemState() //this function displays the state of the system: ON, OFF or
Warning
{
 //write Security System in the first line
 SetAddr (0x80);
 WriteString("Security System ");
 //write the system state on the second line depending on the right condition
 SetAddr (0xC0);
 if(state == 1 && warning == 0){WriteString("State: ON ");}
 else if(state == 1 && warning == 1){WriteString("State: Warning! ");}
 else if (state == 0){WriteString("State: OFF ");}
}

void enterPassword() //this function is to get the password
{
 SetAddr(0xC0); //move the cursor to the beginning of the second line
 WriteString("Password: "); //ask for the password
 SetAddr(0xCA); //move the cursor to the middle of the second line

 for(x = 0; x < 4; x++) //get four numbers for the password
 {
 numberPressed = 12; //there is no key with this value (12)
 while(numberPressed > 9) //disable ON and OFF keys while entering the password
 {
 scan(); //call scan function
 key = numberPressed; //save the value of numberPressed in integer key
 } //repeat that while nothing is pressed or ON/OFF key are
pressed

 //when the key gets a number (0-9) write x on the display
 //(the number that the user pressed for password is hidden, it will not shown in LCD, it will
represented by x)
 WriteChar('x');

 //check this number with the order of the password in thePassword[x], where x represent the
sequence of the right password
 if(key == thePassword[x]) //if the value of key is the same as the sequence of numbers
stored in thePassword[x]
 {
 password++; //increase integer password by 1
 }
 }

 //do the right condition depending on password, state and resetPassword
 if(password == 4 && state == 0 && resetPassword == 0){state = 1;} //if this condition is true
change state from 0 to 1
 else if(password == 4 && state == 1 && resetPassword == 0){state = 0;} //if this condition is true
change state from 1 to 0

 29

 else if(password == 4 && resetPassword == 1){resetPassword = 3;} //if this condition is true
change resetPasword from 1 to 3

 //when all these condition are not true then show Wrong Password! on the display for about 2 second
and the disappear
 else
 {
 SetAddr(0xC0);
 WriteString("Wrong Password! ");
 Delay100TCYx(160);
 SetAddr(0xC0);
 WriteString(" ");
 }

 password = 0; //change the value of password to 0 to make sure that it password will count
correctly for the next time
}

//===
//Interrupt Function
//===
#pragma code isr = 0x08 //puts isr in memory location 0x08
#pragma interrupt isr //declares isr as my interrupt (service) routine

void isr(void)
{
 if (INTCONbits.TMR0IF) //Interrupt Check
 {
 INTCON = 0b10100000; //sets GIE,TMR0IE
 INTCONbits.TMR0IF = 0; //clear TMR0IF
 //set the right value for TMR0H and TMR0L to give a 60 second
 TMR0H = 0xF8;
 TMR0L = 0x7F;

 min++; //increase the min by 1
 if(min == 60){min = 0; hour++;} //when min reach 60 replace it with 0 and increase the hour
by 1
 if(hour == 24){hour = 0;} //when hour reach 24 replace it with 0

 TimeValues(); //store the time value in time[0-3]

 //while interrupting each 1 min the time will increase and will display on the LCD if show is equal
to 1
 if(show == 1)
 {
 ShowTime(); //show the updated time
 }
 }
}

#pragma code // Return to the default code section

//===
//Main Function
//===
void main (void)
{
 //========SETUP========//
 OSCTUNEbits.INTSRC = 0; //To select 31kHz CLK
 OSCCON = 0b00000000; //OSCCON CLK to 31kHz

 ADCON1 = 0b11101111; //all IO are digital, except AN4 (on RA5) to read the microphone
values
 TRISA = 0b00110000; //sets PORTA: all as outputs (LCD), except RA5 (Mic) and RA4
(serverPinOFF) as inputs
 PORTA = 0b00000000; //turns off PORTA outputs , good start position
 TRISB = 0b00001111; //sets PORTB: RB0-RB3 as inputs (Keypad), and RB4-RB7 as outputs
(Keypad and LED)
 PORTB = 0b00000000; //turns off PORTB outputs, good start position
 TRISC = 0b00011000; //sets PORTC: all as outputs (Buzzer, statePin, motionPin and
voicePin), except RC3 (PIR) and RC4 (serverPinON) as inputs
 PORTC = 0b00000000; //turns off PORTC outputs, good start position

 30

 T0CON = 0b10000111; //sets TMR0 on, 16bits, internal clock, prescaler assigned, prescaler
= 256
 INTCON2bits.RBPU=0; //turn on the pull-up resistors (in PORTB)

 ADCON0bits.CHS2 = 1; //select the right channel for ADC
 ADCON0bits.ADON = 1; //turn on A/D
 ADCON2 = 0b10000000; //right justified

 //LCD configuration
 WriteCmd (0x02); //sets 4bit operation
 WriteCmd (FOUR_BIT & LINES_5X7); //sets 5x7 font and multiline operation.
 WriteCmd (CURSOR_BLINK); //blinks cursor
 WriteCmd (CURSOR_RIGHT); //moves cursor right

 //show a welcome message on the screen
 SetAddr(0x80); //set the cursor at the beginning of the first line
 WriteString("Welcome To The "); //show the welcome massage
 SetAddr(0xC0); //set the cursor at the beginning of the second line
 WriteString("Security System "); //show this line on the display
 Delay100TCYx(195); //delay about 2.5 sec
 WriteCmd (CLEAR_SCREEN); //clear the screen

 x = 0; //make sure that x = 0 to enter the while loop
 while (x < 1) //the condition of the while loop is when x is less than 1
 {
 //display tha following on the LCD
 SetAddr (0x80);
 WriteString("Enter The Time ");
 SetAddr (0xC0);
 WriteString(" 00:00 ");

 for(x = 0; x < 4; x++) //get four numbers for the time
 {
 if(x == 0) {SetAddr (0xC5);} //start by placing the cursor at the first 0
of the time
 else if(x == 2) {WriteChar(':');} //before entering the 3 number re-write : and
then continue

 numberPressed = 12; //there is no key with this value (12)
 while(numberPressed > 9) //disable ON and OFF keys while entering the
time
 {
 scan(); //call the scan function
 time[x] = numberPressed; //store the value of numberPressed in time[x]
 }
 //repeat that while nothing is pressed or ON/OFF key are pressed

 WriteChar(0x30 + time[x]); //display the number pressed on the LCD
 }
 WriteString(" "); //write a few spaces to get-rid of the cursor
 Delay100TCYx(80); //delay about 1 sec

 hour = time[1] + (time[0] * 10); //calculate the hour value from the time[0-1]
 min = time[3] + (time[2] * 10); //calculate the min value from the time[2-3]

 //note: after all that x is equal to 3 and it will not do this again
 //check if the time is valid or invalid
 //if the time entered is an invalid time [ask for enter a valid time]
 if(hour > 23 || min > 59)
 {
 SetAddr (0x80);
 WriteString("!!Please Enter!!");
 SetAddr (0xC0);
 WriteString("!!a valid time!!");
 Delay100TCYx(240); //delay about 3 second
 WriteCmd (CLEAR_SCREEN); //clear the screen
 x = 0; //in this case x is change from 3 to 0 to re-enter
the valid time
 }
 }

 INTCON = 0b10100000; //sets GIE,TMR0IE
 INTCONbits.TMR0IF = 0; //clear TMR0IF
 //set the right value for TMR0H and TMR0L, (0xFFFF - 0xF87F = 0x0780, 0x0780 = 1920d = 32 x 60 = 60S)

 31

 TMR0H = 0xF8;
 TMR0L = 0x7F;

 TimeValues(); //call this function to store the time entered values
 systemState(); //show the system state of the LCD

 while (1)
 {
 numberPressed = 12; //there is no key with this value (12)
 while(numberPressed > 11) //enable ON and OFF keys
 {
 ADCON0bits.GO_DONE = 1; // do A/D measurement
 while (ADCON0bits.GO_DONE == 1); //wait until bit = 0 measurement completed
 voice = ADRESL + (ADRESH * 256); //store the value in integer voice

 scan(); //scaning the kepad
 key = numberPressed; //store the value of the kepad in integer key

 //Inputs From Arduino & Ethernet
 if((serverPinON == 1)&&(state == 0)){state = 1; systemState();} //only if
the system is off, turn it on
 if((serverPinOFF == 1)&&(state == 1)){state = 0; systemState();} //only if the system
is on, turn it off

 //voice detection condition, if true voicePin (and LED) = 1 to update the web page
 if((voice > voiceThreshold)&&(state == 1)&&(voice_condition == 0)){voicePin = 1;
voice_condition = 1;}

 //motion detection condition, if true motionPin (and LED) = 1 to update the web page
 if((sensor == 1)&&(state == 1)&&(motion_condition == 0)){motionPin = 1;
motion_condition = 1;}

 //when the systemState is on and this condition is true turn on the buzzer and the
warning state
 if((state == 1) && (sensor == 1 || voice > voiceThreshold) && (LED == 0))
 {
 warning = 1; //turn on warning condition
 LED = 1; //turn on buzzer
 statePin = 1; //turn on statePin to update the state on the web
page

 //PWM 50% 500Hz
 T2CON = 0b00000100; //prescaler + turn on TMR2;
 PR2 = 0b00001111; //set the right value for PR2
 CCPR1L = 0b00000111; //set duty MSB
 CCP1CON = 0b00111100; //duty lowest bits + PWM mode

 WriteCmd (CLEAR_SCREEN); //clear the screen

 //display warning and the time that the state has started
 SetAddr (0x80);
 WriteString(" !!!Warning!!! ");
 ShowTime();
 //store the warning time on LW array
 LW = 1;
 LW_time[0] = time[0];
 LW_time[1] = time[1];
 LW_time[2] = time[2];
 LW_time[3] = time[3];
 }

 //when the systemState is turned off the buzzer will turned off as will as the
warning state and other required signals
 else if (state == 0)
 {
 warning = 0;
 LED = 0;
 voice_condition = 0;
 voicePin = 0;
 motion_condition = 0;
 motionPin = 0;
 statePin = 0;

 //PWM 0%

 32

 T2CON = 0b00000100; //prescaler + turn on TMR2;
 PR2 = 0b00000111; //set the right value for PR2
 CCPR1L = 0b00000000; //set duty MSB
 CCP1CON = 0b00001100; //duty lowest bits + PWM mode
 }

 }

 switch(key) //use switch statement for the integer key, which is the keypad value
 {
 //===============System State===============//
 case 1: //case 1 is to show the system state
 {
 show = 0; //show is 0 to make sure that the updated time will not
display while intruping each 1 min
 systemState(); //show the system state
 break;
 }

 //===============Show The Time===============//
 case 2: //case 2 is to show the time
 {
 show = 1; //show is 1 to make sure that the updated time will display
while intruping each 1 min
 //clear the screen and display the time
 WriteCmd (CLEAR_SCREEN);
 SetAddr (0x80);
 WriteString(" The Time ");
 ShowTime();
 break;
 }

 //===============Reset Password===============//
 case 3: //case 3 is to reset password (or change password)
 {
 show = 0; //show is 0 to make sure that the updated time will not
display while interrupting each 1 min

 //clear the screen and display reset password for about 1.5 second
 WriteCmd (CLEAR_SCREEN);
 SetAddr(0x80);
 WriteString("Reset Password ");
 Delay100TCYx(120);

 //set the cursor back to the beginning of the first line and write the following
 SetAddr(0x80);
 WriteString("Enter The Old ");

 resetPassword = 1; //change the condition of resetPassword to 1 to make
sure that it do the right procedure of reset password
 enterPassword(); //call this function to deal with the password
procedure
 WriteCmd (CLEAR_SCREEN); //clear the screen

 //in the enterPassword function:
 //when the password is wrong display a wrong password message and keep
resetPassword 1, and go back to system state
 //when the password is correct resetPassword will change to 3, and then the user
will asked to enter the new password
 if(resetPassword == 3)
 {
 //clear screen and ask for the new password
 WriteCmd (CLEAR_SCREEN);
 SetAddr (0x80);
 WriteString("Enter The New ");
 SetAddr(0xC0);
 WriteString("Password: ");
 SetAddr(0xCA);

 //take four numbers of the new password
 for(x = 0; x < 4; x++)
 {
 numberPressed = 12; //there is no key
with this value (12)

 33

 while(numberPressed > 9) //disable ON and OFF
keys while entring the new password
 {
 scan();
 //scan the keypad
 thePassword[x] = numberPressed; //write the new password over the
old password in thePassword[0-3] (overwrite)
 }
 //repeat that while nothing is pressed or ON/OFF key are pressed

 WriteChar(0x30 + thePassword[x]); //display the number that been
pressed on the LCD
 }
 WriteString(" "); //write a
few spaces to get-rid of the cursor
 Delay100TCYx(80); //delay
about 1 second
 SetAddr(0xC0); //move
cursor to the beginning of the second line
 WriteString("Password: xxxx "); //convert the password to xxxx
 Delay100TCYx(80); //delay
about 1 second
 }
 resetPassword = 0; //change
resetPassword back to 0
 systemState(); //show the system
state
 break;
 }

 //===========Show Last Warning Time===========//
 case 4:
 { //clear the screen and show the last warning time
 show = 0; //show is 0 to make sure that the updated
time will not display while intruping each 1 min
 WriteCmd (CLEAR_SCREEN);
 SetAddr (0x80);
 WriteString("Last Warning ");
 ShowLWTime();
 break;
 }

 //=================ON State==================//
 case 10:
 {
 //when system state is already ON disable this key by doing nothing
 if(state == 0) //when the system state is OFF enable ON key
 {
 show = 0;
 //show is 0 to make sure that the updated time will not display while intruping each 1 min
 WriteCmd (CLEAR_SCREEN); //clear the screen
 SetAddr (0x80); //move
cursor to the beginning of the first line
 WriteString("Security System "); //display this message

 //in the enterPassword function, the programme will ask for the
password, if it correct to turn the system,
 //if it wrong = wrong password message and keep the system state
without changing it
 enterPassword();
 systemState(); //display the system state

 }
 break;
 }

 //=================OFF State=================//
 case 11:
 {
 //when system state is already OFF disable this key by doing nothing
 if(state == 1) //when the system state is ON enable OFF key
 {
 show = 0;
 //show is 0 to make sure that the updated time will not display while interrupting each 1 min

 34

 WriteCmd (CLEAR_SCREEN); //clear the screen
 SetAddr (0x80); //move
cursor to the beginning of the first line
 WriteString("Security System "); //display this message

 //in the enterPassword function, the programme will ask for the
password, if it correct to turn the system,
 //if it wrong = wrong password message and keep the system state
without changing it
 enterPassword();
 systemState(); //display the system state

 }
 break;
 }
 }
 }
}

 35

Appendix-10: Arduino Code.

//===
//Project Title : Security Alarm System
//Student Names : Mohamed Alsubaie, Ahmed Alkhwher and Naif Alharbi
//Student ID NO.: 09562211, 10981738 and 09564323
//Supervisor : Professor Nicholas Bowring
//===

//Include Headers Files (libraries)
#include <Ethernet.h>
#include <SPI.h>

//Outputs to the PIC Microcontroller
#define offPin 19 //the responsible pin to turn off the system
#define onPin 18 //the responsible pin to turn on the system

//Inputs From the PIC Microcontroller
#define statePin 17 //system state
#define PIRPin 16 //PIR (movement detection)
#define MicPin 15 //Microphone (voice detection)

int state; //integer to hold the state in the Arduino Microcontroller
int statePIC; //integer to read the PIC state
int PIR; //integer to read the PIR state
int Mic; //integer to read the Mic state

//Mac Address of the provided Ethernet Shield
byte mac[] = { 0x90, 0xA2, 0xAD, 0x00, 0x5B, 0x16 };

EthernetServer server(80);

void setup()
{
 Serial.begin(9600); //initialize the serial communications
 Ethernet.begin(mac); //set up the Ethernet
 server.begin();
 Serial.print("My IP Address: "); //print the IP address on the serial monitor
 Serial.println(Ethernet.localIP());

 //set the inputs of the Arduino
 pinMode(statepin, INPUT);
 pinMode(PIRPin, INPUT);
 pinMode(MicPin, INPUT);

 //set the outputs of the Arduino
 pinMode(onPin, OUTPUT);
 pinMode(offPin, OUTPUT);

 delay(500); //delay for 0.5s
 state = digitalRead(statePin); //Hold the current state
}

void loop()
{
 EthernetClient client = server.available();

 if (client)
 {
 //an http request ends with a blank line
 boolean currentLineIsBlank = true;
 String buffer = "";

 //Declare the buffer variable
 while (client.connected())
 {
 if (client.available())
 {
 char c = client.read();
 Serial.print(c); //Send every character read to serial port
 buffer+=c; //Assign to the buffer

 if (c == '\n' && currentLineIsBlank)
 {

 36

 //send a standard http response header
 client.println("HTTP/1.1 200 OK"); //Standard HTTP response
 client.println("Content-Type: text/html\n");
 client.println("<meta http-equiv=\"refresh\"content=\"5");

 //return the status value to 0, in order to prevent from crashes with the PIC microcontroller
 //in other word if status value stay 2 the user will not be able to turn off the system from the
keypad
 //the same with status = 1. so it necessarily to return this value to 0 which will give a
trigger signal
 //that can be detected from the PIC microcontroller.
 if(state < 2){client.print("; URL=http://"); client.print(Ethernet.localIP());
client.print("/?status=2\">");}
 else {client.println("\">");}

 //show the MMU logo and the Project Title
 client.println("<body>");
 client.println("<img src =
\"http://www2.docm.mmu.ac.uk/STAFF/N.Rattenbury/PopMathsQuiz/MMU_logo.jpg\" alt=\"Smiley face\"
style=\"float:right\" width=\"80\" height=\"100\"><h1>Security System </h1><hr>");

 //read the PIC Inputs
 statePIC = digitalRead(statePin);
 Mic = digitalRead(MicPin);
 PIR = digitalRead(PIRPin);

 //check the current state if (ON, OFF, of Warning!)
 client.println("<h3>Current State: ");
 if(statePIC == HIGH && PIR == LOW && Mic == LOW)
 {client.println("ON</h3>");}
 else if (statePIC == HIGH && (PIR == HIGH || Mic == HIGH))
 {client.println("Warning!</h3>");}
 else{client.println("OFF</h3>");}

 //check if PIR detact somthing
 client.println("<h3>Movement Detection: ");
 if(PIR == HIGH)
 {client.println("YES</h3>");}
 else{client.println("NO</h3>");}

 //check if Microphone detact somthing
 client.println("<h3>Voice Detection: ");
 if(Mic == HIGH)
 {client.println("YES</h3>");}
 else{client.println("NO</h3>");}

 //creat a radio buttons and submit button for user
 client.println("<h3>Change State: </h3>"); //show a headline
 client.print("<FORM action=\"http://"); //form an action
 client.print(Ethernet.localIP()); //print the IP address, which is the website name
 client.print("/\" >");
 //creat the first radio button and call it ON with status value of 2
 client.print("<P><INPUT type=\"radio\" name=\"status\" value=\"2\">Turn ON");
 //creat the second radio button and call it OFF with status value of 1
 client.print("<P><INPUT type=\"radio\" name=\"status\" value=\"1\">Turn OFF");
 //creat the submit button
 client.print("<P><INPUT type=\"submit\" value=\"Submit\"> </FORM>");
 client.println("</body>");
 break;
 }

 if (c == '\n')
 {
 // you're starting a new line
 currentLineIsBlank = true;
 buffer=""; // Clear the buffer at end of line
 }

 else if (c == '\r')
 {
 //turn on the system through the internet if ON button is selected (trigger only)
 if(buffer.indexOf("GET /?status=1")>=0) { state = 2; digitalWrite(onPin, HIGH);}

 //turn off the system through internet if OFF button is selected (trigger only)

 37

 if(buffer.indexOf("GET /?status=0")>=0) { state = 1; digitalWrite(offPin, HIGH);}

 //turn off both offPin and onPin after providing a trigger signal to the PIC Microcontroller
 if(buffer.indexOf("GET /?status=2")>=0) { state = 0; digitalWrite(onPin, LOW); digitalWrite(offPin,
LOW);}
 }

 else
 {
 // you've gotten a character on the current line
 currentLineIsBlank = false;
 }
 }
 }

 delay(1);
 // close the connection:
 client.stop();
 }
}

